

    
      
          
            
  
phmdoctest 1.4.0


Contents:


	phmdoctest 1.4.0
	Introduction

	Installation

	Sample usage

	Sample Usage with HTML comment directives

	CI usage

	report option

	Identifying blocks

	Directives

	skip

	label on code and sessions

	label on any fenced code block

	pytest skip

	pytest skipif

	setup

	teardown

	share-names

	clear-names

	pytest mark decorator

	label skip and mark example

	setup and teardown example

	share-names clear-names example

	Configuration

	Inline annotations

	skipping blocks with skip option

	skip option

	short form of skip option

	fail-nocode option

	setup option

	teardown option

	Setup example

	Setup for sessions

	Execution context

	Send outfile to stdout

	Usage

	Run as a Python module

	Python API

	pytest fixtures

	Simulate command line

	Hints

	Directive hints

	Related projects





	Using a configuration file

	Recent changes

	Development tools API version 1.4.0
	Generate a pytest file.

	Generate pytest files using a configuration file.

	Test with Pytest fixtures.

	Simulate the command line.

	Read contents of Markdown fenced code blocks.

	Get elements from test suite JUnit XML output.

	Check a Markdown file for Python examples.

	Prepare directory for generated test files.





	About the documentation
	Implementation

	Tools

	Files





	Contributing

	List of examples
	Snippet of use in GitHub Actions

	This is Markdown file example1.md

	This is Markdown file example2.md

	doc/test_example2.py

	This is Markdown file directive1.md

	doc/directive1.md

	doc/directive1_report.txt

	doc/test_directive1.py

	This is Markdown file directive2.md

	doc/directive2.md

	doc/directive2_report.txt

	doc/test_directive2.py

	This is Markdown file directive3.md

	doc/directive3.md

	doc/directive3_report.txt

	doc/test_directive3.py

	This is file doc/my_markdown_file.md

	Examples of code and session blocks

	This is Markdown file setup.md

	doc/test_setup.py

	This is Markdown file setup_doctest.md

	doc/test_setup_doctest.py

	This is Markdown file mark_example.md

	doc/mark_example.md

	doc/test_mark_example.py

	This is Markdown file inline_example.md

	doc/test_inline_example.py

	tests/project_test.py












Search


	Search Page








            

          

      

      

    

  

    
      
          
            
  
phmdoctest 1.4.0


Introduction

Python syntax highlighted Markdown doctest

Command line program and Python library to test Python syntax
highlighted code examples in Markdown.


	Creates a pytest [https://docs.pytest.org/en/stable] Python module that tests Python examples in
README and other Markdown files.


	Reads these from Markdown fenced code blocks:


	Python interactive sessions described by doctest [https://docs.python.org/3/library/doctest.html].


	Python source code and expected terminal output.






	The test cases get run later by running pytest.


	Simple use case is possible with no Markdown edits at all.


	More features selected by adding HTML comment directives
to the Markdown.


	Set test case name.


	Add a pytest custom marker.


	Add a pytest.mark.skip decorator.


	Promote names defined in a test case to module level globals.


	Label any fenced code block for later retrieval (API).






	Configurable. Discover and process many Markdown files in a single command.


	Add inline annotations to comment out sections of code.


	Get code coverage by running pytest with coverage [https://pypi.org/project/coverage].


	Select Python source code blocks as setup and teardown code.


	Setup applies to code blocks and optionally to session blocks.


	An included Python library: Latest Development tools API [https://phmdoctest.readthedocs.io/en/latest/doc/api.html].


	Python function returns test file in a string. (testfile() in main.py)


	Two pytest fixtures. (tester.py)


	testfile_creator runs testfile(). Use with testfile_tester.


	testfile_tester runs a pytest file with pytest’s pytester
in its isolated environment.






	Runs phmdoctest and can run pytest too. (simulator.py)


	Functions to read fenced code blocks from Markdown. (tool.py)


	Test Markdown for Python examples. (tool.py)


	Prepare directory for generated test files. (tool.py)


	Extract testsuite tree and list of failing trees from JUnit XML. (tool.py)






	Available as the pytest plugin pytest-phmdoctest [https://pypi.org/project/pytest-phmdoctest].





default branch status

[image: ] [https://github.com/tmarktaylor/phmdoctest/blob/master/LICENSE.txt]
[image: ] [https://pypi.python.org/pypi/phmdoctest]
[image: ] [https://pypi.python.org/pypi/phmdoctest]
[image: Code style: black] [https://github.com/psf/black]

[image: CI Test] [https://github.com/tmarktaylor/phmdoctest/actions/workflows/ci.yml]
[image: Build status] [https://ci.appveyor.com/project/tmarktaylor/phmdoctest/branch/master]
[image: readthedocs] [https://phmdoctest.readthedocs.io/en/latest/?badge=latest]
[image: codecov] [https://codecov.io/gh/tmarktaylor/phmdoctest?branch=master]

Website [https://tmarktaylor.github.io/phmdoctest] |
Docs [https://phmdoctest.readthedocs.io/en/latest/] |
Repos [https://github.com/tmarktaylor/phmdoctest] |
pytest [https://ci.appveyor.com/project/tmarktaylor/phmdoctest] |
Codecov [https://codecov.io/gh/tmarktaylor/phmdoctest?branch=master] |
License [https://github.com/tmarktaylor/phmdoctest/blob/master/LICENSE.txt]

Introduction |
Installation |
Sample usage |
Sample Usage with HTML comment directives |
CI usage |
–report |
Identifying blocks |
Directives |
skip |
label on code and sessions |
label on any fenced code block |
pytest skip |
pytest skipif |
setup |
teardown |
share-names |
clear-names |
pytest mark decorator |
label skip and mark example |
setup and teardown example |
share-names clear-names example |
Configuration |
Inline annotations |
skipping blocks with –skip |
–skip |
short form of –skip |
–fail-nocode |
–setup |
–teardown |
Setup example |
Setup for sessions |
Execution context |
Send outfile to stdout |
Usage |
Run as a Python module |
Python API |
pytest fixtures |
Simulate command line |
Hints |
Directive hints |
Related projects

Changes |
Contributions |
About






Installation

It is advisable to install in a virtual environment.

python -m pip install phmdoctest








Sample usage

Given the Markdown file example1.md
shown in raw form here…


# This is Markdown file example1.md

## Interactive Python session (doctest)

```py
>>> print("Hello World!")
Hello World!
```

## Source Code and terminal output

Code:
```python
from enum import Enum

class Floats(Enum):
    APPLES = 1
    CIDER = 2
    CHERRIES = 3
    ADUCK = 4

for floater in Floats:
    print(floater)
```

sample output:
```
Floats.APPLES
Floats.CIDER
Floats.CHERRIES
Floats.ADUCK
```





the command…


phmdoctest doc/example1.md --outfile test_example1.py





creates the python source code file test_example1.py shown here…


"""pytest file built from doc/example1.md"""
from phmdoctest.functions import _phm_compare_exact


def session_00001_line_6():
    r"""
    >>> print("Hello World!")
    Hello World!
    """


def test_code_14_output_28(capsys):
    from enum import Enum

    class Floats(Enum):
        APPLES = 1
        CIDER = 2
        CHERRIES = 3
        ADUCK = 4

    for floater in Floats:
        print(floater)

    _phm_expected_str = """\
Floats.APPLES
Floats.CIDER
Floats.CHERRIES
Floats.ADUCK
"""
    _phm_compare_exact(a=_phm_expected_str, b=capsys.readouterr().out)





Then run a pytest command something like this in your terminal
to test the Markdown session, code, and expected output blocks.

pytest --doctest-modules





Or these two commands:

pytest
python -m doctest test_example1.py





The line_6 in the function name session_00001_line_6 is the
line number in example1.md of the first line
of the interactive session. 00001 is a sequence number to
order the doctests.

The 14 in the function name test_code_14_output_28 is the
line number of the first line
of python code. 28 shows the line number of the expected
terminal output.

One test case function gets generated for each:


	Markdown fenced code block interactive session


	Python-code/expected-output Markdown fenced code block pair




The --report option below shows the blocks discovered and
how they are tested.




Sample Usage with HTML comment directives

Given the Markdown file shown in raw form here…


<!--phmdoctest-mark.skip-->
<!--phmdoctest-label test_example-->
```python
print("Hello World!")
```
```
incorrect expected output
```





the command…


phmdoctest tests/one_mark_skip.md --outfile test_one_mark_skip.py





creates the python source code file shown here…


"""pytest file built from tests/one_mark_skip.md"""
import pytest

from phmdoctest.functions import _phm_compare_exact


@pytest.mark.skip()
def test_example(capsys):
    print("Hello World!")

    _phm_expected_str = """\
incorrect expected output
"""
    _phm_compare_exact(a=_phm_expected_str, b=capsys.readouterr().out)





Run the –outfile with pytest…

$ pytest -vv test_one_mark_skip.py

test_one_mark_skip.py::test_example SKIPPED






	The HTML comments in the Markdown are phmdoctest directives.


	The mark.skip directive adds the @pytest.mark.skip() line.


	The label directive names the test case function.


	List of  Directives


	Directives are optional.


	Markdown edits are optional.







CI usage

Test Python examples in README.md in Continuous Integration scripts.
In this snippet for Linux the pytest test suite is in the
tests folder.


mkdir tests/tmp
phmdoctest README.md --report --outfile tests/tmp/test_readme.py
pytest --doctest-modules -vv tests





This console shows testing Python examples in project.md.
Look for the tmp tests at the bottom. Windows Usage on Appveyor [https://ci.appveyor.com/project/tmarktaylor/phmdoctest].

See this excerpt from ci.yml Actions usage example.
It runs on Windows, Linux, and macOS. Please find the phmdoctest command
at the bottom.

No changes to README.md are needed here, look in the last job log [https://travis-ci.org/tmarktaylor/monotable].




report option

To see the GFM fenced code blocks [https://github.github.com/gfm/#fenced-code-blocks] in the MARKDOWN_FILE use the
--report option like this:


phmdoctest doc/example2.md --report





which lists the fenced code blocks it found in
the file example2.md.
The test role column shows how each fenced code block gets tested.


         doc/example2.md fenced blocks
------------------------------------------------
block     line  test     TEXT or directive
type    number  role     quoted and one per line
------------------------------------------------
python       9  code
            14  output
python      20  code
            26  output
            31  --
python      37  code
python      44  code
            51  output
yaml        59  --
text        67  --
py          75  session
python      87  code
            94  output
py         102  session
------------------------------------------------
7 test cases.
1 code blocks with no output block.








Identifying blocks

The PYPI commonmark [https://pypi.org/project/commonmark] project provides code to extract fenced code
blocks from Markdown. Specification CommonMark Spec [https://spec.commonmark.org] and website CommonMark [https://commonmark.org].

Python code, expected output, and Python interactive sessions get extracted.

Only GFM fenced code blocks [https://github.github.com/gfm/#fenced-code-blocks] are considered.

A block is a session block if the info_string starts with py
and the first line of the block starts with the
session prompt: '>>> '.

To be treated as Python code the opening fence should start
with one of these:

```python
```python3
```py3





plus the block contents can’t start with '>>> '.

The examples use the info_strings python for code and py for sessions
since they render with coloring on GitHub, readthedocs, GitHub Pages,
and Python package index.

project.md has more examples of code and session blocks.

It is ok if the info string [https://github.github.com/gfm/#info-string]
is laden with additional text, it will be ignored.  The
entire info string will be shown in the block type column of the
report.

An output block is a fenced code block that immediately follows a
Python block and starts with an opening fence like this which
has an empty info string.

```





A Python code block has no output
if it is followed by any of:


	Python code block


	Python session block


	a fenced code block with a non-empty info string




Test code gets generated for it, but there will be no
assertion statement.




Directives

Directives are HTML comments containing test generation commands.
They are edited into the Markdown file immediately before a fenced
code block. It is OK if other HTML comments are present.
See the <!--phmdoctest-skip--> directive in the
raw Markdown below.
With the skip directive no test code will be
generated from the fenced code block.


<!--phmdoctest-skip-->
<!--Another HTML comment-->
```python
print("Hello World!")
```
Expected Output
```
Hello World!
```





List of Directives

       Directive HTML comment      |    Use on blocks
---------------------------------- | ---------------------
<!--phmdoctest-skip-->             | code, session, output
<!--phmdoctest-label IDENTIFIER--> | code, session
<!--phmdoctest-label TEXT-->       | any
<!--phmdoctest-mark.skip-->        | code
<!--phmdoctest-mark.skipif<3.N-->  | code
<!--phmdoctest-setup-->            | code
<!--phmdoctest-teardown-->         | code
<!--phmdoctest-share-names-->      | code
<!--phmdoctest-clear-names-->      | code
<!--phmdoctest-mark.ATTRIBUTE-->   | code





Directive hints




skip

The skip directive or --skip TEXT command line option
prevents code generation for the code or session block.
The skip directive can be placed on an expected output block.
There it prevents checking expected against actual output.
Example.




label on code and sessions

When used on a Python code block or session the label directive
changes the name of the generated test function.
Example.
Two generated tests, the first without a label,
shown in pytest -v terminal output:

test_readme.py::test_code_93 FAILED
test_readme.py::test_beta_feature FAILED








label on any fenced code block

On any fenced code block, the label directive identifies the block
for later retrieval by the class phmdoctest.tool.FCBChooser().
The FCBChooser is used separately from phmdoctest in
a different pytest file. This allows the test developer to write
additional test cases for fenced code blocks that are not handled by
phmdoctest. The directive value can be any string.


# This is file doc/my_markdown_file.md

<!--phmdoctest-label my-fenced-code-block-->
```
The label directive can be placed on any fenced code block.
```





Here is Python code to fetch it:


import phmdoctest.tool

chooser = phmdoctest.tool.FCBChooser("doc/my_markdown_file.md")
contents = chooser.contents(label="my-fenced-code-block")
print(contents)





Output:


The label directive can be placed on any fenced code block.








pytest skip

The <!--phmdoctest-mark.skip-->  directive generates a test
case with a @pytest.mark.skip() decorator.
Example.




pytest skipif

The <!--phmdoctest-mark.skipif<3.N-->  directive generates
a test case with the pytest decorator
@pytest.mark.skipif(sys.version_info < (3, N), reason="requires >=py3.N").
N is a Python minor version number.
Example.




setup

A single Python code block can assign names visible to
other code blocks by adding a setup directive or
using the –setup command line option.

Names assigned by the setup block
get copied to the test module’s global namespace after
the setup block runs.

Here is an example setup block from
setup.md:


import math

mylist = [1, 2, 3]
a, b = 10, 11

def doubler(x):
    return x * 2





Using setup modifies the execution context of the
Python code blocks in the Markdown file.
The names math, mylist, a, b, and doubler are visible
to the other Python code blocks. The objects can be modified.
Example.




teardown

Selects a single Python code block that runs
at test module teardown time.
A teardown block can also be designated
using the –teardown command line option.
Example.




share-names

Names assigned by the Python code block get copied to
the test module as globals after the test code runs. This happens at run
time. These names are now visible to subsequent
test cases generated for Python code blocks in the Markdown file.
share-names modifies the execution context as described for
the setup directive above.
The share-names directive can be used on more than one
code block.
Example.

This directive effectively joins its Python code block to the
following Python code blocks in the Markdown file.




clear-names

After the test case generated for the Python code block
with the clear-names directive runs, all names that were
created by one or more preceding share-names directives
get deleted. The names that were shared are no longer visible.
This directive also deletes the names assigned by setup.
Example.




pytest mark decorator

The <!--phmdoctest-mark.ATTRIBUTE--> directive adds
a @pytest.mark.ATTRIBUTE decorator to the
generated test function. ATTRIBUTE is a valid Python attribute
identifier. This defines a marker to pytest that is used to
select and deselect tests. See the pytest documentation section
“Working with custom markers”.
The file mark_example.md contains
example usage of the user defined marker “slow”. It generates
test_mark_example.py




label skip and mark example

The file directive1.md contains
example usage of label, skip, and mark directives.
The command below generates
test_directive1.py.
phmdoctest doc/directive1.md --report
produces this
report.


phmdoctest doc/directive1.md --outfile test_directive1.py








setup and teardown example

The file directive2.md contains
example usage of label, skip, and mark directives.
The command below generates
test_directive2.py.
phmdoctest doc/directive2.md --report
produces this
report.


phmdoctest doc/directive2.md --outfile test_directive2.py








share-names clear-names example

The file directive3.md contains
example usage of share-names and clear-names directives.
The command below generates
test_directive3.py.
phmdoctest doc/directive3.md --report
produces this
report.


phmdoctest doc/directive3.md --outfile test_directive3.py








Configuration

Supply a .ini, .cfg, or .toml configuration file in place of the Markdown file.
Configuration features:


	Choose Markdown files for test file generation. (glob wildcards).


	Exclude Markdown files from test file generation. (glob wildcards).


	Name the output directory.


	Removes stale test files from output directory.


	Enable printing.




Place a [tool.phmdoctest] section in the configuration file.
How to configure.




Inline annotations

Inline annotations comment out sections of code.
They can be added to the end of lines in Python code blocks.
They should be in a comment.


	phmdoctest:omit comments out a section of code.  The line it is on,
plus following lines at greater indent get commented out.


	phmdoctest:pass comments out one line of code and prepends the pass statement.




Here is a snippet showing how to place phmdoctest:pass in the code.
The second block shows the code that is generated. Note there is no #
immediately before phmdoctest:pass. It is not required.


import time
def takes_too_long():
    time.sleep(100)    # delay for awhile. phmdoctest:pass
takes_too_long()






import time
def takes_too_long():
    pass  # time.sleep(100)    # delay for awhile. phmdoctest:pass
takes_too_long()





Use phmdoctest:omit on single or multi-line statements. Note the two
commented out time.sleep(99). They follow and are indented more
that the if condition:line with phmdoctest:omit.


import time                      # phmdoctest:omit

condition = True
if condition:       # phmdoctest:omit
    time.sleep(99)
    time.sleep(99)






# import time                      # phmdoctest:omit

condition = True
# if condition:       # phmdoctest:omit
#     time.sleep(99)
#     time.sleep(99)





Inline annotation processing counts the number of commented
out sections and adds the count as the suffix
_N to the name of the pytest function in the
generated test file.

Inline annotations are similar, but less powerful
than the Python standard library doctest directive #doctest+SKIP.
Improper use of phmdoctest:omit can cause Python syntax errors.

The examples above are snippets that illustrate how to
use inline annotations.
Here is an example that produces a pytest file from Markdown.
The command below takes inline_example.md and generates
test_inline_example.py.


phmdoctest doc/inline_example.md --outfile test_inline_example.py








skipping blocks with skip option

If you don’t want to generate test cases for Python
blocks precede the block with a skip directive or
use the --skip TEXT option. More than one skip directive
or--skip TEXTis allowed.

The following describes using --skip TEXT.
The code in each Python block gets searched
for the substring TEXT.  Zero, one or more blocks will contain
the substring. These blocks will not generate test cases in the
output file.


	The Python code in the fenced code block gets searched.


	The info string is not searched.


	Output blocks are not searched.


	Both Python code and session blocks get searched.


	Case is significant.




The report shows which Python blocks get skipped
in the test role column, and the Python blocks that
matched each –skip TEXT in the skips section.

This option makes it very easy to inadvertently exclude
Python blocks from the test cases.  In the event no test cases get
generated, the option --fail-nocode described below is useful.

Three special --skip TEXT strings work a little differently.
They select one of the first, second, or last of the Python blocks.
Only Python blocks get counted.


	--skip FIRST skips the first Python block.


	--skip SECOND skips the second Python block.


	--skip LAST skips the final Python block.







skip option

This command using --skip:


phmdoctest doc/example2.md --skip "Python 3.7" --skip LAST --report --outfile test_example2.py





Produces the report


            doc/example2.md fenced blocks
-----------------------------------------------------
block     line  test          TEXT or directive
type    number  role          quoted and one per line
-----------------------------------------------------
python       9  code
            14  output
python      20  skip-code     "Python 3.7"
            26  skip-output
            31  --
python      37  code
python      44  code
            51  output
yaml        59  --
text        67  --
py          75  session
python      87  code
            94  output
py         102  skip-session  "LAST"
-----------------------------------------------------
5 test cases.
1 skipped code blocks.
1 skipped interactive session blocks.
1 code blocks with no output block.

  skip pattern matches (blank means no match)
------------------------------------------------
skip pattern  matching code block line number(s)
------------------------------------------------
Python 3.7    20
LAST          102
------------------------------------------------





creates the output file test_example2.py




short form of skip option

This is the same command as above using the short -s form of the --skip option
in two places.
It produces the same report and outfile.


phmdoctest doc/example2.md -s "Python 3.7" -sLAST --report --outfile test_example2.py








fail-nocode option

The --fail-nocode option produces a pytest file that will always
fail when no Python code or session blocks get found.

Evem if no Python code or session blocks exist in the
Markdown file a pytest file gets generated.
This also happens when --skip eliminates all the
Python code blocks.
The generated pytest file will have the function
def test_nothing_passes().

If the option --fail-nocode is passed the
function is def test_nothing_fails() which raises an
assertion.




setup option

A single Python code block can assign names visible to
other code blocks by giving the --setup TEXT option.
Please see the setup directive above.
The rules for TEXT are the same as for --skip TEXT plus…


	Only one block can match TEXT.


	The block cannot match a block that is skipped.


	The block cannot be a session block even though session
blocks get searched for TEXT.


	It is ok if the block has an output block. It will be ignored.







teardown option

A single Python code block can supply code run by the pytest
teardown_module() fixture. Use the --teardown TEXT option.
Please see the teardown directive above.
The rules for TEXT are the same as for --setup above except
TEXT won’t match a setup block.




Setup example

For the Markdown file setup.md
run this command to see how the blocks get tested.


phmdoctest doc/setup.md --setup FIRST --teardown LAST --report






            doc/setup.md fenced blocks
-------------------------------------------------
block     line  test      TEXT or directive
type    number  role      quoted and one per line
-------------------------------------------------
python       9  setup     "FIRST"
python      20  code
            27  output
python      37  code
            42  output
python      47  code
            51  output
python      58  teardown  "LAST"
-------------------------------------------------
3 test cases.





This command


phmdoctest doc/setup.md --setup FIRST --teardown LAST --outfile test_setup.py





creates the test file
test_setup.py




Setup for sessions

The pytest option --doctest-modules is required to
run doctest on sessions.  pytest runs doctests in
a separate context.
For more on this see Execution context below.

To allow sessions to see the variables assigned by the --setup
code block, add the option --setup-doctest

Here is an example with setup code and sessions
setup_doctest.md. The first part
of this file is a copy of setup.md.

This command  uses the short form of setup and teardown.
-u for setup and -d for teardown.


phmdoctest doc/setup_doctest.md -u FIRST -d LAST --setup-doctest --outfile test_setup_doctest.py





It creates the test file
test_setup_doctest.py




Execution context

When run without --setup


	pytest and doctest determine the order of test case execution.


	phmdoctest assumes test code and session execution is in file order.


	Test case order is not significant.


	Code and expected output run within a function body of a pytest test case.


	If pytest is invoked with --doctest-modules:


	Sessions are run in a separate doctest execution context.


	Otherwise, sessions do not run.









With --setup


	Names assigned by setup code are visible to code blocks.


	Code blocks can modify the objects created by the setup code.


	Code block test case order is significant.


	Session order is not significant.


	If pytest is run with --doctest-modules:


	pytest runs two separate contexts: one for sessions, one for code blocks.


	setup and teardown code gets run twice, once by each context.


	the names assigned by the setup code block
are are not visible to the sessions.











With share-names


	Only following code blocks can modify the shared objects.


	Shared objects will not be visible to sessions
if pytest is run with --doctest-modules.


	After running a code block with clear-names


	Shared objects will no longer be visible.


	Names assigned by setup code will no longer be visible.











With --setup and --setup-doctest

Same as the setup section plus:


	names assigned by the setup code block
are visible to the sessions.


	Sessions can modify the objects created by the setup code.


	Session order is significant.


	Sessions and code blocks are still running in separate contexts
isolated from each other.


	A session can’t affect a code block, and a code block can’t affect
a session.


	Names assigned by the setup code block are globally visible
to the entire test suite via the pytest doctest_namespace
fixture.  See hint near the end Hints.







pytest live logging demo

The live logging demos reveals pytest execution contexts.
pytest Live Logs show the
execution order of setup_module(), test cases, sessions, and
teardown_module().
There are 2 demo invocations in the workflow action
called pytest Live Log Demo.  GitHub login required.






Send outfile to stdout

To redirect the above outfile to the standard output stream use one
of these two commands.

Be sure to leave out --report when sending –outfile to standard output.


phmdoctest doc/example2.md -s "Python 3.7" -sLAST --outfile -





or


phmdoctest doc/example2.md -s "Python 3.7" -sLAST --outfile=-








Usage

phmdoctest --help


Usage: phmdoctest [OPTIONS] MARKDOWN_FILE

  MARKDOWN_FILE may also be .toml, .cfg, or .ini configuration file.

Options:
  --outfile TEXT       Write generated test case file to path TEXT. "-" writes
                       to stdout.

  -s, --skip TEXT      Any Python code or interactive session block that
                       contains the substring TEXT is not tested. More than
                       one --skip TEXT is ok. Double quote if TEXT contains
                       spaces. For example --skip="python 3.7" will skip every
                       Python block that contains the substring "python 3.7".
                       If TEXT is one of the 3 capitalized strings FIRST
                       SECOND LAST the first, second, or last Python code or
                       session block in the Markdown file is skipped.

  --report             Show how the Markdown fenced code blocks are used.

  --fail-nocode        This option sets behavior when the Markdown file has no
                       Python fenced code blocks or interactive session blocks
                       or if all such blocks are skipped. When this option is
                       present the generated pytest file has a test function
                       called test_nothing_fails() that will raise an
                       assertion. If this option is not present the generated
                       pytest file has test_nothing_passes() which will never
                       fail.

  -u, --setup TEXT     The Python code block that contains the substring TEXT
                       is run at test module setup time. Variables assigned at
                       the outer level are visible as globals to the other
                       Python code blocks. TEXT should match exactly one code
                       block. If TEXT is one of the 3 capitalized strings
                       FIRST SECOND LAST the first, second, or last Python
                       code or session block in the Markdown file is matched.
                       A block will not match --setup if it matches --skip, or
                       if it is a session block. Use --setup-doctest below to
                       grant Python sessions access to the globals.

  -d, --teardown TEXT  The Python code block that contains the substring TEXT
                       is run at test module teardown time. TEXT should match
                       exactly one code block. If TEXT is one of the 3
                       capitalized strings FIRST SECOND LAST the first,
                       second, or last Python code or session block in the
                       Markdown file is matched. A block will not match
                       --teardown if it matches either --skip or --setup, or
                       if it is a session block.

--setup-doctest        Make globals created by the --setup Python code block
                       or setup directive visible to session blocks and only
                       when they are tested with the pytest --doctest-modules
                       option.  Please note that pytest runs doctests in a
                       separate context that only runs doctests. This option
                       is ignored if there is no --setup option.

  --version            Show the version and exit.
  --help               Show this message and exit.








Run as a Python module

To run phmdoctest from the command line:

python -m phmdoctest doc/example2.md --report




Python API

Call main.testfile() to generate a pytest file in memory.
Please see the Python API here [https://phmdoctest.readthedocs.io/en/latest/doc/api.html].
The example generates a pytest file from doc/setup.md and
compares the result to doc/test_setup.py.


from pathlib import Path
import phmdoctest.main

generated_testfile = phmdoctest.main.testfile(
    "doc/setup.md",
    setup="FIRST",
    teardown="LAST",
)
expected = Path("doc/test_setup.py").read_text(encoding="utf-8")
assert expected == generated_testfile








pytest fixtures

Use fixture testfile_creator to generate a test file in memory.
Pass the test file to fixture testfile_tester to run
the test file in the pytester environment.
Fixture API [https://phmdoctest.readthedocs.io/en/latest/doc/api.html] | Example.
See more uses in tests/test_examples.py, tests/test_details.py, and
tests/test_many_markdown.py.
The fixtures run pytest much faster than run_and_pytest()
below since there is no subprocess call.
In the readthedocs documentation see the section Development tools API 1.4.0.
pytest’s pytester is suitable for pytest plugin development.




Simulate command line

To simulate a command line call to phmdoctest from
within a Python script phmdoctest.simulator offers the
function run_and_pytest().


	it creates the –outfile in a temporary directory


	optionally runs pytest on the outfile


	pytest can return a JUnit XML report


	useful during development to validate the command line
and prevent use of a stale –outfile




Please see the Latest Development tools API section [https://phmdoctest.readthedocs.io/en/latest/doc/api.html] or
the docstring of the function run_and_pytest() in the file simulator.py.
Pass pytest_options as a list of strings as shown below.


import phmdoctest.simulator

command = "phmdoctest doc/example1.md --report --outfile temporary.py"
simulator_status = phmdoctest.simulator.run_and_pytest(
    well_formed_command=command, pytest_options=["--doctest-modules", "-v"]
)
assert simulator_status.runner_status.exit_code == 0
assert simulator_status.pytest_exit_code == 0








Hints


	To read the Markdown file from the standard input stream.
Use - for MARKDOWN_FILE.


	Write the test file to a temporary directory so that
it is always up to date.


	In CI scripts the following shell command will create the temporary
directory tmp in the tests folder on Windows, Linux, and macOS.

python -c "from pathlib import Path; d = Path('tests') / 'tmp'; d.mkdir(mode=0o700)"







	It is easy to use –output by mistake instead of --outfile.


	If Python code block has no output, put assert statements in the code.


	Use pytest option --doctest-modules to test the sessions.


	Markdown indented code blocks (Spec [https://spec.commonmark.org] section 4.4) are ignored.


	simulator_status.runner_status.exit_code == 2 is the click
command line usage error.


	Since phmdoctest generates code, the input file should be from a trusted
source.


	An empty code block gets given the role del-code. It is not tested.


	Use special TEXT values FIRST, SECOND, LAST for the command
line options --setup and --teardown since they only match one block.


	The variable names managenamespace, doctest_namespace,
capsys, and _phm_expected_str should not be used in
Markdown Python code blocks since they may be used in generated code.


	Setup and teardown code blocks cannot have expected output.


	To have pytest collect a code block with the label directive
start the value with test_.


	With the --setup-doctest option, names assigned by the setup code
block are globally visible to the entire test suite.
This is due to the scope of the pytest doctest_namespace
fixture.  Try using a separate pytest command to test
just the phmdoctest test.


	The module phmdoctest.fixture is imported at pytest time
to support setup, teardown, share-names, and clear-names features.


	The phmdoctest Markdown parser finds fenced code blocks enclosed by
html <details> and </details> tags.
The tags may require a preceding and trailing blank line
to render correctly. See example in tests/test_details.py.


	Try redirecting phmdoctest standard output into PYPI Pygments to
colorize the generated test file.

python -m phmdoctest project.md --outfile - | pygmentize







	If the –outfile is written into a folder that pre-exists in the
repository, consider adding the outfile name to .gitignore. If
the outfile name later changes, the change will be needed in
.gitignore too.

# Reserved for generated test file.
tests/test_readme.py












Directive hints


	Only put one of setup, teardown, share-names, or
clear-names on a code block.


	Only one block can be setup. Only one block can be teardown.


	The setup or teardown block can’t have an expected output block.


	Label directive does not generate a test
case name on setup and teardown blocks.


	Directives displayed in the --report start with a dash like
this: -label test_i_ratio.


	Code generated by Python blocks with setup and teardown
directives runs at the pytest fixture scope="module" level.


	Code generated by Python blocks with share-names and
clear-names directives are collected and run by pytest
like any other test case.


	A malformed HTML comment ending is bad. Make sure
it ends with both dashes like -->.  Running with --report
will expose that problem.


	The setup, teardown, share-names, and clear-names directives
have logging. To see the log messages,
run pytest with the option:
--log-cli-level=DEBUG --color=yes


	There is no limit to number of blank lines after
the directive HTML comment but before the fenced code block.


	The directive <!--phmdoctest-mark.xfail--> might be useful as
an alternative to <!--phmdoctest-mark.skip--> for failing examples.


	The directive <!--phmdoctest-mark.ATTRIBUTE--> will not be
effective when used with <!--phmdoctest-setup--> or
<!--phmdoctest-teardown--> because pytest marks can only
be applied to tests. They have no effect on fixtures.
Setup and teardown use fixtures.







Related projects


	rundoc


	byexample


	sphinx.ext.doctest


	sybil


	doxec


	egtest


	pytest-phmdoctest


	pytest-codeblocks










            

          

      

      

    

  

    
      
          
            
  
Using a configuration file

Just pass the configuration filename as the first argument instead
of a Markdown file. The other command line options are ignored.
The config file may be formatted as ‘.toml’, .ini. or ‘.cfg’.
The phmdoctest configuration section [tool.phmdoctest] may
be added to pre-existing configuration files.

A separate invocation of pytest is needed to run the generated test files.

Here are some example invocations using a configuration file
that has the phmdoctest configuration section. These
configuration files are in the phmdoctest repository.


phmdoctest pyproject.toml
pytest -v --doctest-modules .gendir-toml

phmdoctest setup.cfg
pytest -v --doctest-modules .gendir-cfg

phmdoctest tox.ini
pytest -v --doctest-modules .gendir-ini





You can also pass a configuration file by Python.
Look for the Python API in the readthedocs documentation.
See the section Development tools API 1.4.0.

This is a good starting point template section for a .toml format file.


[tool.phmdoctest]
# https://pypi.org/project/phmdoctest
# Writes pytest files generated from Markdown to output_directory.
# Invoke pytest separately to run the generated pytest files.

markdown_globs = [
    "README.md",
    "doc/*.md",
]
exclude_globs = [
]

output_directory = ".gendir-typical-toml"
print = ["filename", "summary"]






	Filenames and globs are relative to the current
working directory of the shell that invokes phmdoctest.


	The output_directory can be relative or absolute.




Please see Python standard library pathlib Path.glob(pattern)
for glob syntax.
The ** glob pattern indicates recursive directory search. We
could do the whole repository with (.toml)
markdown_globs = ["**/*.md"]

The generated test files get written to the directory specified
by output_directory.

output_directory is cleaned of all *.py
files before writing new test files.
Pre-existing *.py files in the output directory get renamed. If
output_directory inadvertently gets pointed at a Python
source directory, the renamed files can be recovered by renaming them.

The markdown_globs key specifies Markdown files to select for
test file generation. The globs may be one per line or comma separated.
Comments are OK on separate lines or at the end of a line.

The exclude_globs key specifies Markdown files that should not
generate test files. Markdown files that don’t have any Python examples
get automatically excluded.

The print key directs printing.


	If filename is present the filename prints after test file generation
and before writing the generated test file.


	If summary is present the number of test files generated
is printed last.




To prevent printing everything set print like this:

# .ini, .cfg
print =

# .toml
print = []





Here is an example .cfg format configuration file used
for testing this project.
The .ini format is the same.


# tests/generate.cfg
[tool.phmdoctest]
# https://pypi.org/project/phmdoctest
# Writes pytest files generated from Markdown to output_directory.
# Invoke pytest separately to run the generated pytest files.
markdown_globs =
    # Refer to Python standard library Path.glob(pattern)
    project.md
    doc/*.md
    tests/managenamespace.md  # inline comments are ok
    tests/one_code_block.md
    tests/output_has_blank_lines.md
    tests/setup_only.md
    tests/twentysix_session_blocks.md

exclude_globs =
    # Don't test files matching globs below:
    # Reason- needs command line args.
    doc/setup.md
    doc/setup_doctest.md
    # Reason- contains an already generated test file.
    doc/*_raw.md
    doc/*_py.md
    # Reason- need to register markers to avoid PytestUnknownMarkWarning.
    doc/mark_example.md

output_directory = .gendir-suite-cfg
print = filename, summary





This is the equivalent .toml format.


# tests/generate.toml
[tool.phmdoctest]
# https://pypi.org/project/phmdoctest
# Writes pytest files generated from Markdown to output_directory.
# Invoke pytest separately to run the generated pytest files.

markdown_globs = [
    # Refer to Python standard library Path.glob(pattern)
    "project.md",
    "doc/*.md",
    "tests/managenamespace.md",
    "tests/one_code_block.md",
    "tests/output_has_blank_lines.md",
    "tests/setup_only.md",
    "tests/twentysix_session_blocks.md",
]
exclude_globs = [
    # Don't test files matching globs below:
    # Reason- needs command line args.
    "doc/setup.md",
    "doc/setup_doctest.md",
    # Reason- contains an already generated test file.
    "doc/*_raw.md",
    "doc/*_py.md",
    # Reason- need to register markers to avoid PytestUnknownMarkWarning.
    "doc/mark_example.md",
]

output_directory = ".gendir-suite-toml"
print = ["filename", "summary"]









            

          

      

      

    

  

    
      
          
            
  
Recent changes

1.4.0 - 2022-03-19


	Add feature to generate test files using a configuration file.


	Add <--phmdoctest-mark.ATTRIBUTE--> directive.


	Add tool to check for Python examples.


	Add tool to prepare a generated test file output directory.


	Bugfix- issue- pytest not required for installation.


	Combined CI script install.yml into ci.yml.


	Close open files in test_readthedocs_python_version().




1.3.0 - 2021-11-08


	Add main.testfile().


	Add testfile_creator and testfile_tester fixtures.


	Bugfix- Issue- Generated test name has output_NN when skip
directive on output block.


	Bugfix- Issue- mark.skipif example code causes pytest AST fail at
assertion rewrite time. Happens on skipped Python version.
Replaced with code that compiles on the skipped version.


	Drop Python 3.6 add Python 3.10.




tests:


	Add mode=0o700 to mkdir() calls in test .yml files.


	Run tests in virtual envirionments. ci.yml.


	Add test_details.py.


	Add Appveyor to CI to show pytest items.


	Rework requirements files. Add tests.


	Refactor new fixtures to conftest.py.


	Rework/refactor quick_links test logic.


	Add test to find trailing spaces in sources.


	Tox no longer used in test suite.




docs:


	Bugfix- Issue- Markdown header level out of sequence.


	Loosen doc dependencies.


	Fenced code block info_string pycon -> py.


	Sphinx with myst_parser for docs.




style:


	Style/pep8/inspection fixes.


	Path and open changes.


	Remove trailing spaces from ~25 files.




1.2.1 - 2021-07-07


	Bugfix- #16, #15, Issue- Simulator subprocess failed on win venv.


	Code Quality fixes: assert –> raise.


	Make fenced code block info_strings compatible with GitHub pages.


	Restored tox.ini.




1.2.0 - 2021-06-09


	Add inline annotations.


	Reformat code style with black.


	Rework setup.py/setup.cfg.


	Remove tox.


	Fix bad example in README.md.




1.1.1 - 2021-05-14


	Bugfix- Pull Request #6, Issue #8 –outfile missing import pytest.


	Documentation typo fixes.




1.1.0 - 2021-05-12


	Add test directives taken from HTML comments in .md.


	Implement setup/teardown with Pytest fixtures.


	Use difflib.ndiff to show unexpected output.


	Add simulator feature to return JUnitXML from pytest.




1.0.1 - 2020-12-16


	Bugfix- Issue #4- pytest fails in pypy3 if using –setup, –setup-doctest.


	Removed pytest –strict option since not needed.




1.0.0 - 2020-07-12


	New feature to do setup and teardown code block.




0.1.0 - 2020-06-14


	New feature to handle Python interactive sessions.




0.0.6 - 2020-06-07


	Bugfix- Issue- Skip pattern matching start of code ignored.




0.0.5 - 2020-04-20


	Bugfix- Issue- Won’t fail if Python code block doesn’t print.


	Bugfix- Issue- README CI example missing “install:”.


	Add Development tools API section to the documentation.


	Pin phmdoctest dependency version ranges in setup.py.




0.0.4 - 2020-04-02


	Changes to build documentation on readthedocs.org.


	Inspection fixes.




0.0.3 - 2020-03-18


	Initial upload to Python Package Index.








            

          

      

      

    

  

    
      
          
            
  



Development tools API version 1.4.0


Generate a pytest file.


	
phmdoctest.main.testfile(markdown_file: str = '', *, skips: Optional[List[str]] = None, fail_nocode: bool = False, setup: Optional[str] = None, teardown: Optional[str] = None, setup_doctest: bool = False, built_from: str = '') → str

	Run with callers keyword arguments and default values.

Return a string that contains the generated pytest file.
The parameters are described by the command line help.
Each string in the list skips is described by the –skip TEXT
command line option.


	Parameters

	markdown_file – Path to the Markdown input file.



	Keyword Arguments

	
	skips – List[str]. Do not test blocks with substring TEXT.


	fail_nocode – Markdown file with no code blocks generates a failing test.


	setup – Run block with substring TEXT at test module setup time.


	teardown – Run block with substring TEXT at test module teardown time.


	setup_doctest – Make globals created by the setup Python code block
or setup directive visible to Python interactive session >>> blocks.
The globals are set at Pytest Session scope and are visible
to all tests run by –doctest-modules.


	built_from – Text that follows “built from” in test file’s docstring.
When empty string the docstring built from text is derived
from markdown_file.






	Returns

	String containing the contents of the generated pytest file.












Generate pytest files using a configuration file.


	
phmdoctest.main.generate_using(config_file: pathlib.Path) → None

	Generate test files as directed by configuration file.

See the “Using a configuration file” section of the documentation.


	The markdown_globs key specifies Markdown files to select for
test file generation.


	The exclude_globs key specifies Markdown files that should not
generate test files. Markdown files that don’t have any Python examples
are automatically excluded.


	The generated test files get written to the directory specified
by output_directory.


	The print key directs printing.





	Parameters

	config_file – Path to the .cfg, .ini, or .toml configuration file.












Test with Pytest fixtures.


	
phmdoctest.tester.testfile_creator(pytestconfig)

	Fixture creates the pytest test file contents from the Markdown file.

A Markdown file, in a folder relative to the pytest command line
invocation directory is processed by phmdoctest to create a
pytest file which is returned as a string.

This fixture is needed to produce the pytest test file when using the
fixture testfile_tester below because pytester changes the current
working directory when it is activated.

The fixture injects a function with the following signature. Please
consult the source in tester.py.
The returned function calls phmdoctest.main.testfile() to generate
the pytest test file from Markdown.


	Parameters

	markdown_file – Path to the Markdown input file. This file name is relative
to the working directory of the command that invokes pytest.
Typically this is the root of the repository.



	Keyword Arguments

	
	skips – List[str]. Do not test blocks with substring TEXT.


	fail_nocode – Markdown file with no code blocks generates a failing test.


	setup – Run block with substring TEXT at test module setup time.


	teardown – Run block with substring TEXT at test module teardown time.


	setup_doctest – Make globals created by the setup Python code block
or setup directive visible to Python interactive session >>> blocks.
Caution: The globals are set at Pytest Session scope and are visible
to all tests run by –doctest-modules.






	Returns

	String containing the contents of the generated pytest file.










	
phmdoctest.tester.testfile_tester(pytester)

	Fixture runs pytester.runpytest with the caller’s pytest file string.

Stores the caller’s pytest test file contents
in a temporary directory hosted by pytest. Run pytest on it
using pytest_options.
Typically the caller runs testfile_creator to generate the test file.
See example usage in the files tests/test_examples.py
and tests/test_details.py.

The fixture injects a function with the following signature. Please
consult the source in tester.py.


	pytester requires conftest.py in tests folder with
pytest_plugins = [“pytester”]


	Requires pytest >= 6.2.





	Parameters

	
	contents – String containing the contents of a pytest test file.


	testfile_name – Name given to the test file when it is stored in the
pytester temporary directory.


	pytest_options – List of strings of pytest command line options
that are passed to pytester.






	Returns

	pytest RunResult returned by pytester.runpytest().












Simulate the command line.


	
phmdoctest.simulator.run_and_pytest(well_formed_command: str, pytest_options: Optional[List[str]] = None, junit_family: Optional[str] = None) → phmdoctest.simulator.SimulatorStatus

	Simulate a phmdoctest command, optionally run pytest.

If a filename is provided by the --outfile option, the
command is rewritten replacing the OUTFILE with a
path to a temporary directory and a synthesized filename.

To run pytest on an --outfile, pass a list of zero or
more pytest_options.  pytest is run in a subprocess.

The PYPI package pytest must be installed separately
since pytest is not required to install phmdoctest.
Use this command: pip install pytest

Returns SimulatorStatus object.
SimulatorStatus.runner_status is the CliRunner.invoke return value.

If an outfile is streamed to stdout a copy of it
is found in simulator_status.runner_status.stdout.

If calling run_and_pytest() from a pytest file, try adding the
pytest option --capture=tee-sys to the command running
pytest on the file.

For example on a checkout of phmdoctest the command line:

python -m pytest tests -v --capture=tee-sys

will print the outputs from the subprocess.run() invocations
of pytest on the --outfile written to the temporary directory.
A wild guess would be that the subprocess inherited changes
made to the parent by –capture=tee-sys.


	Parameters

	
	well_formed_command – 
	starts with phmdoctest


	followed by MARKDOWN_FILE


	ends with --outfile OUTFILE (if needed)


	all other options are between MARKDOWN_FILE and --outfile
for example:
phmdoctest MARKDOWN_FILE --skip FIRST --outfile OUTFILE







	pytest_options – List of strings like this: ["--doctest-modules", "-v"].
Set to empty list to run pytest with no options.
Set to None to skip pytest.


	junit_family – Configures the format of the Pytest generated JUnit XML string
returned in SimulatorStatus.  The value is used for the
Pytest configuration option of the same name.
Set to None or the empty string to skip XML generation.






	Returns

	SimulatorStatus containing runner_status, outfile,
pytest_exit_code, and generated JUnit XML.












Read contents of Markdown fenced code blocks.


	
class phmdoctest.tool.FCBChooser(markdown_filename: str)

	Select labeled fenced code block from the Markdown file.






	
FCBChooser.__init__(markdown_filename: str)

	Gather labelled Markdown fenced code blocks in the file.


	Parameters

	markdown_filename – Path to the Markdown file as a string.










	
FCBChooser.contents(label: str = '') → str

	Return contents of the labeled fenced code block with label.


	Parameters

	label – Value of label directive placed on the fenced code block
in the Markdown file.



	Returns

	Contents of the labeled fenced code block as a string
or empty string if the label is not found. Fenced code block
strings typically end with a newline.










	
class phmdoctest.tool.LabeledFCB(label, line, contents)

	Describes a fenced code block that has a label directive. (collections.namedtuple).


	Parameters

	
	label – The label directive’s value.


	line – Markdown file line number of block contents.


	contents – Fenced code block contents.













	
phmdoctest.tool.labeled_fenced_code_blocks(markdown_filename: str) → List[phmdoctest.tool.LabeledFCB]

	Return Markdown fenced code blocks that have label directives.

Label directives are placed immediately before a fenced code block
in the Markdown source file. The directive can be placed before any
fenced code block.
The label directive is the HTML comment <!--phmdoctest-label VALUE-->
where VALUE is typically a legal Python identifier. The space must
be present before VALUE.
The label directive is also used to name the test function
in generated code.  When used that way, it must be a valid
Python identifier.
If there is more than one label directive on the block, the
label value that occurs earliest in the file is used.


	Parameters

	markdown_filename – Path to the Markdown file as a string.



	Returns

	List of LabeledFCB objects.

LabeledFCB is a NamedTuple with these fields:


	label is the value of a label directive
placed in a HTML comment before the fenced code block.


	line is the line number in the Markdown file where the block
starts.


	contents is the fenced code block contents as a string.















	
phmdoctest.tool.fenced_code_blocks(markdown_filename: str) → List[str]

	Return Markdown fenced code block contents as a list of strings.


	Parameters

	markdown_filename – Path to the Markdown file as a string.



	Returns

	List of strings, one for the contents of each Markdown
fenced code block.










	
phmdoctest.tool.fenced_block_nodes(fp: IO[str]) → List[commonmark.node.Node]

	Get markdown fenced code blocks as list of Node objects.

Deprecation Watch: This function may be labelled as deprecated in a
future version of phmdoctest.  It returns a data type defined by
the commonmark package.


	Parameters

	fp – file object returned by open().



	Returns

	List of commonmark.node.Node objects.












Get elements from test suite JUnit XML output.


	
phmdoctest.tool.extract_testsuite(junit_xml_string: str) → Tuple[Optional[xml.etree.ElementTree.Element], List[xml.etree.ElementTree.Element]]

	Return testsuite tree and list of failing trees from JUnit XML.


	Parameters

	junit_xml_string – String containing JUnit xml returned by
pytest or phmdoctest.simulator.run_and_pytest().



	Returns

	tuple testsuite tree, list of failed test case trees












Check a Markdown file for Python examples.


	
class phmdoctest.tool.PythonExamples(has_code, has_session)

	Presence of Python fenced code blocks in Markdown. (collections.namedtuple)


	Parameters

	
	has_code – True if detected at least one fenced code block with Python code.


	has_session – True if detected at least one fenced code block with Python
interactive session (doctest).













	
phmdoctest.tool.detect_python_examples(markdown_path: pathlib.Path) → phmdoctest.tool.PythonExamples

	Return whether .md has any Python highlighted fenced code blocks.


This includes Python code blocks and Python doctest interactive session
blocks. These blocks may or may not generate test cases once processed
by phmdoctest.test_file() and collected.


	We don’t care here if the code block is followed by expected output.


	This logic does not check if the block has any phmdoctest skip,
mark.skip, or mark.skipif directives.


	This logic does not check if the block would be skipped by
a phmdoctest command line –skip option.








	Parameters

	markdown_path – pathlib.Path of input Markdown file.












Prepare directory for generated test files.


	
phmdoctest.tool.wipe_testfile_directory(target_dir: pathlib.Path) → None

	Create and/or clean target_dir directory to receive generated testfiles.

Create target_dir if needed for writing generated pytest files.
Prevent future use of pre-existing .py files in target_dir.



	The FILENAME.py files found in target_dir are renamed
to noFILENAME.sav.


	If a noFILENAME.sav already exists it is not modified.


	Files in target_dir with other extensions are not modified.


	A FILENAME.py pre-existing in target_dir is only renamed
and not deleted.
This allows for recovery of .py files when target_dir gets pointed
by mistake to a directory with Python source files.








	Parameters

	target_dir – pathlib.Path of destination directory for generated test files.















            

          

      

      

    

  

    
      
          
            
  
About the documentation

README.md at the project root serves as the:


	project home page


	PYPI long description


	user manual




Design considerations:


	Most text is in the README.


	Python Package Index long description taken from the README.


	README is at the GitHub repository root.


	Examples in the README are fully syntax highlighted.


	Building a static copy of the documentation for offline use.


	No visible raw ReStructured text in the README rendered by GitHub.





Implementation


	GitHub pages hosts the project website.


	GitHub hosts the repository and renders README.md.


	readthedocs.org hosts the HTML and creates the PDF for offline use.


	Nearly everything is in README.md. These aren’t:


	index.rst - Top level of the Sphinx documentation.


	about.md - About the documentation (this page).


	api.rst - Development tools API generated by
Sphinx autodoc and napoleon.


	recent_changes.md


	CONTRIBUTING.md











Tools


	GitHub Pages


	Sphinx


	myst_parser




myst_parser enables Sphinx to parse Markdown files.




Files

These files are at the project root:


	_config.yml


	.readthedocs.yml


	index.rst


	README.md


	conf.py




GitHub page build consumes _config.yml.

Since conf.py is at the project root Sphinx searches the entire
project for document source files.  Additional
exclude_patterns keep out unwanted document source files.

The files below in the doc folder are not part of the documentation:


	make_wrapped_examples.py


	livelog.py


	livelog_test_assertion.py


	livelog_bad_session.py





Read the Docs hosting

readthedocs.org hosts the Sphinx documentation.
doc/requirements.txt lists the build dependencies.









            

          

      

      

    

  

    
      
          
            
  
Contributing


	Create an issue or submit a pull request forked from the develop branch.


	For pull requests please refer to steps 1-6 at the top of Contributing to Simple Icons [https://github.com/simple-icons/simple-icons/blob/develop/CONTRIBUTING.md]




Preconditions for pull request merge:


	For bug fixes a test that fails.


	Documentation and test updates for features.








            

          

      

      

    

  

    
      
          
            
  
List of examples

These pages are referenced by relative links in README.md.



	Snippet of use in GitHub Actions

	This is Markdown file example1.md
	Interactive Python session (doctest)

	Source Code and terminal output





	This is Markdown file example2.md
	Fenced code block expected output block pair.

	Another fenced code block expected output block pair.

	Here is a second fenced code block with no info string.

	Here are two Python code blocks in a row and one output block at the end.

	A fenced code block with yaml info string.

	A fenced block with text info string

	A doctest session

	One more code plus expected output pair.

	Another doctest session (skipped in test_example2.py)





	doc/test_example2.py

	This is Markdown file directive1.md
	skip directive. No test case gets generated.

	skip directive on an expected output block.

	skip directive on Python session.

	mark.skip directive with label directive.

	mark.skipif directive.

	label directive on a session.





	doc/directive1.md

	doc/directive1_report.txt

	doc/test_directive1.py

	This is Markdown file directive2.md
	This will be marked as the setup code.

	This test case shows the setup names are visible.

	This test case modifies mylist.

	This test case sees the modified mylist.

	This will be marked as the teardown code.





	doc/directive2.md

	doc/directive2_report.txt

	doc/test_directive2.py

	This is Markdown file directive3.md
	share-names and clear-names directives.

	Share the names assigned here with later Python code blocks.

	This test case shows the shared names are visible.

	This test case modifies grades.

	This test case sees the modified grades.

	This test case shares another name.

	Use clear-names directive to un-share.





	doc/directive3.md

	doc/directive3_report.txt

	doc/test_directive3.py

	This is file doc/my_markdown_file.md

	Examples of code and session blocks
	An example with a blank line in the output

	Interactive Python session requires <BLANKINE> in the expected output

	Interactive Python session with doctest directive

	Session with py as the fenced code block info_string





	This is Markdown file setup.md
	This will be the setup code.

	This test case shows the setup names are visible

	This test case modifies mylist.

	This test case sees the modified mylist.

	This will be specified as the teardown code.





	doc/test_setup.py

	This is Markdown file setup_doctest.md
	This will be the setup code.

	This test case shows the setup names are visible

	This test case modifies mylist.

	The next test case sees the modified mylist.

	The names created by the setup code are optionally visible to sessions.

	This will be specified as the teardown code.





	doc/test_setup_doctest.py

	This is Markdown file mark_example.md
	Fenced code block expected output block pair.

	The code block has 2 directives:

	A doctest session





	doc/mark_example.md

	doc/test_mark_example.py

	This is Markdown file inline_example.md

	doc/test_inline_example.py

	tests/project_test.py









            

          

      

      

    

  

    
      
          
            
  
Snippet of use in GitHub Actions

(This view is bad on github.io since it removes the variable
references in the .yml script.
View
here [https://github.com/tmarktaylor/phmdoctest/blob/v1.4.0/doc/actions_usage.md]
instead.)

jobs:
  os:
    runs-on: ${{ matrix.os }}
    strategy:
      matrix:
        os: [ubuntu-latest, windows-latest, macos-latest]
    steps:
    - uses: actions/checkout@v2
    - name: Set up Python 3.x
      uses: actions/setup-python@v2
      with:
        python-version: 3.x
    - name: Windows Venv
      run: |
        python -m venv ${{ github.workspace }}\env
        ${{ github.workspace }}\env\Scripts\Activate.ps1
        python -m pip --version
      if: startswith(runner.os, 'Windows')
    - name: Linux/macOS Venv
      run: |
        python -m venv ${{ github.workspace }}/env
        source ${{ github.workspace }}/env/bin/activate
        python -m pip --version
      if: startswith(runner.os, 'Linux') || startswith(runner.os, 'macOS')
    - name: Install dependencies
      run: |
        python -m pip install --upgrade pip
        python -m pip install --no-deps "."
        python -m pip install -r requirements.txt
        python -m pip install -r tests/requirements.txt
    - name: Tests
      run: |
        python -c "from pathlib import Path; d = Path('tests') / 'tmp'; d.mkdir(mode=0o700)"
        phmdoctest project.md --report --outfile tests/tmp/test_project.py
        pytest --doctest-modules -vv tests









            

          

      

      

    

  

    
      
          
            
  
This is Markdown file example1.md


Interactive Python session (doctest)

>>> print("Hello World!")
Hello World!








Source Code and terminal output

Code:

from enum import Enum

class Floats(Enum):
    APPLES = 1
    CIDER = 2
    CHERRIES = 3
    ADUCK = 4

for floater in Floats:
    print(floater)





sample output:

Floats.APPLES
Floats.CIDER
Floats.CHERRIES
Floats.ADUCK











            

          

      

      

    

  

    
      
          
            
  
This is Markdown file example2.md


Fenced code block expected output block pair.

In order for phmdoctest to work with Python source code and
terminal output add print statements to the
source code to produce the expected output.

Example code adapted from the Python Tutorial:

squares = [1, 4, 9, 16, 25]
print(squares)





expected output:

[1, 4, 9, 16, 25]








Another fenced code block expected output block pair.

Example code adapted from What’s new in Python:

# Formatted string literals require Python 3.7
name = "Fred"
print(f"He said his name is {name}.")





expected output:

He said his name is Fred.








Here is a second fenced code block with no info string.

doesn't have an info string








Here are two Python code blocks in a row and one output block at the end.

The first one:

a, b = 0, 1
while a < 1000:
    print(a, end=",")
    a, b = b, a + b





The second one. This means the preceding code block has no output block.

words = ["cat", "window", "defenestrate"]
for w in words:
    print(w, len(w))





The expected output block for the second code block:

cat 3
window 6
defenestrate 12








A fenced code block with yaml info string.

dist: xenial
language: python
sudo: false








A fenced block with text info string

some text








A doctest session

Here is a Python interactive session.  It is described by
the Python Standard Library module doctest.  Note there is
no need for an empty line at the end of the session.

>>> a = "Greetings Planet!"
>>> a
'Greetings Planet!'
>>> b = 12
>>> b
12








One more code plus expected output pair.

Example borrowed from Python Standard Library datetime documentation.

from datetime import date

d = date.fromordinal(730920)  # 730920th day after 1. 1. 0001
print(d)





2002-03-11








Another doctest session (skipped in test_example2.py)

Example borrowed from Python Standard Library
fractions documentation.

>>> from fractions import Fraction
>>> Fraction(16, -10)
Fraction(-8, 5)
>>> Fraction(123)
Fraction(123, 1)
>>> Fraction()
Fraction(0, 1)
>>> Fraction('3/7')
Fraction(3, 7)











            

          

      

      

    

  

    
      
          
            
  
doc/test_example2.py

"""pytest file built from doc/example2.md"""
from phmdoctest.functions import _phm_compare_exact


def test_code_9_output_14(capsys):
    squares = [1, 4, 9, 16, 25]
    print(squares)

    _phm_expected_str = """\
[1, 4, 9, 16, 25]
"""
    _phm_compare_exact(a=_phm_expected_str, b=capsys.readouterr().out)


def test_code_37():
    a, b = 0, 1
    while a < 1000:
        print(a, end=",")
        a, b = b, a + b

    # Caution- no assertions.


def test_code_44_output_51(capsys):
    words = ["cat", "window", "defenestrate"]
    for w in words:
        print(w, len(w))

    _phm_expected_str = """\
cat 3
window 6
defenestrate 12
"""
    _phm_compare_exact(a=_phm_expected_str, b=capsys.readouterr().out)


def session_00001_line_75():
    r"""
    >>> a = "Greetings Planet!"
    >>> a
    'Greetings Planet!'
    >>> b = 12
    >>> b
    12
    """


def test_code_87_output_94(capsys):
    from datetime import date

    d = date.fromordinal(730920)  # 730920th day after 1. 1. 0001
    print(d)

    _phm_expected_str = """\
2002-03-11
"""
    _phm_compare_exact(a=_phm_expected_str, b=capsys.readouterr().out)





The above syntax highlighted fenced code block contains the
contents of a python source file.
It is included in the documentation as an example python file.





            

          

      

      

    

  

    
      
          
            
  
This is Markdown file directive1.md

Directives are HTML comments and are not rendered.
To see the directives press Edit on GitHub and then
the Raw button.


skip directive. No test case gets generated.

It is OK to put a directive above pre-existing HTML comments.
The HTML comments are not visible
in the rendered Markdown.




assert False








skip directive on an expected output block.

Generates a test case that runs the code block but does
not check the expected output.

from datetime import date

date.today()






datetime.date(2021, 4, 18)








skip directive on Python session.

No test case gets generated.


>>> print("Hello World!")
incorrect expected output should fail
if test case is generated








mark.skip directive with label directive.


	Use mark.skip on Python code blocks.
A test case gets generated with a @pytest.mark.skip()
decorator.


	On a code block the label directive gives the
function name of the generated test case.






print("testing @pytest.mark.skip().")





incorrect expected output








mark.skipif directive.

Use mark.skipif on Python code blocks.
A test case gets generated with a @pytest.mark.skipif(…)
decorator.  This test case will only run when Python
is version 3.8 or higher. int.as_integer_ratio() is new in
Python 3.8.



b = 10
print(b.as_integer_ratio())





(10, 1)








label directive on a session.

This will generate a test case called doctest_print_coffee().
It does not start with test_ to avoid collection as a test item.


>>> print("coffee")
coffee











            

          

      

      

    

  

    
      
          
            
  
doc/directive1.md

# This is Markdown file directive1.md

Directives are HTML comments and are not rendered.
To see the directives press Edit on GitHub and then
the Raw button.

## skip directive. No test case gets generated.
It is OK to put a directive above pre-existing HTML comments.
The HTML comments are not visible
in the rendered Markdown.

<!--phmdoctest-skip-->
<!-- OK if there is more than one HTML comment here -->
<!-- OK if there is a HTML comment here -->
```python
assert False
```

## skip directive on an expected output block.
Generates a test case that runs the code block but does
not check the expected output.
```python
from datetime import date

date.today()
```

<!--phmdoctest-skip-->
```
datetime.date(2021, 4, 18)
```

## skip directive on Python session.

No test case gets generated.
<!--phmdoctest-skip-->
```py
>>> print("Hello World!")
incorrect expected output should fail
if test case is generated
```

## mark.skip directive with label directive.
- Use `mark.skip` on Python code blocks.
  A test case gets generated with a @pytest.mark.skip()
  decorator.
- On a code block the label directive gives the
  function name of the generated test case.

<!--phmdoctest-mark.skip-->
<!--phmdoctest-label test_mark_skip-->
```python
print("testing @pytest.mark.skip().")
```
```
incorrect expected output
```

## mark.skipif directive.

Use mark.skipif on Python code blocks.
A test case gets generated with a @pytest.mark.skipif(...)
decorator.  This test case will only run when Python
is version 3.8 or higher. int.as_integer_ratio() is new in
Python 3.8.

<!--phmdoctest-label test_i_ratio-->
<!--phmdoctest-mark.skipif<3.8-->
```python
b = 10
print(b.as_integer_ratio())
```
```
(10, 1)
```

## label directive on a session.
This will generate a test case called `doctest_print_coffee()`.
It does not start with test_ to avoid collection as a test item.
<!--phmdoctest-label doctest_print_coffee-->
```py
>>> print("coffee")
coffee
```





The above fenced code block contains the contents of a Markdown file.
It shows the HTML comments which are not visible in rendered Markdown.
It is included in the documentation as an example raw Markdown file.





            

          

      

      

    

  

    
      
          
            
  
doc/directive1_report.txt

             doc/directive1.md fenced blocks
---------------------------------------------------------
block     line  test          TEXT or directive
type    number  role          quoted and one per line
---------------------------------------------------------
python      16  skip-code     -skip
python      23  code
            30  skip-output   -skip
py          38  skip-session  -skip
python      53  code          -mark.skip
                              -label test_mark_skip
            56  output
python      70  code          -label test_i_ratio
                              -mark.skipif<3.8
            74  output
py          82  session       -label doctest_print_coffee
---------------------------------------------------------
4 test cases.
1 skipped code blocks.
1 skipped interactive session blocks.
1 code blocks with no output block.





The above fenced code block contains the contents of a plain text file.
It is included in the documentation as an example text file.





            

          

      

      

    

  

    
      
          
            
  
doc/test_directive1.py

"""pytest file built from doc/directive1.md"""
import sys

import pytest

from phmdoctest.functions import _phm_compare_exact


def test_code_23():
    from datetime import date

    date.today()

    # Caution- no assertions.


@pytest.mark.skip()
def test_mark_skip(capsys):
    print("testing @pytest.mark.skip().")

    _phm_expected_str = """\
incorrect expected output
"""
    _phm_compare_exact(a=_phm_expected_str, b=capsys.readouterr().out)


@pytest.mark.skipif(sys.version_info < (3, 8), reason="requires >=py3.8")
def test_i_ratio(capsys):
    b = 10
    print(b.as_integer_ratio())

    _phm_expected_str = """\
(10, 1)
"""
    _phm_compare_exact(a=_phm_expected_str, b=capsys.readouterr().out)


def doctest_print_coffee():
    r"""
    >>> print("coffee")
    coffee
    """





The above syntax highlighted fenced code block contains the
contents of a python source file.
It is included in the documentation as an example python file.





            

          

      

      

    

  

    
      
          
            
  
This is Markdown file directive2.md

Directives are HTML comments and are not rendered.
To see the directives press Edit on GitHub and then
the Raw button.


This will be marked as the setup code.

The setup logic makes the names assigned here global to the test module.
The code assigns the names math, mylist, a, b, and the function doubler().
Setup code does not have an output block.
Note the <!--phmdoctest-setup--> directive in the Markdown file.


import math

mylist = [1, 2, 3]
a, b = 10, 11

def doubler(x):
    return x * 2








This test case shows the setup names are visible.

print("math.pi=", round(math.pi, 3))
print(mylist)
print(a, b)
print("doubler(16)=", doubler(16))





expected output:

math.pi= 3.142
[1, 2, 3]
10 11
doubler(16)= 32








This test case modifies mylist.

The objects created by the –setup code can be modified
and blocks run afterward will see the changes.

mylist.append(4)
print(mylist)





expected output:

[1, 2, 3, 4]








This test case sees the modified mylist.

print(mylist == [1, 2, 3, 4])





expected output:

True








This will be marked as the teardown code.

Teardown code does not have an output block.
Note <!--phmdoctest-teardown--> directive in the Markdown file.


mylist.clear()
assert not mylist, "mylist was not emptied"











            

          

      

      

    

  

    
      
          
            
  
doc/directive2.md

# This is Markdown file directive2.md

Directives are HTML comments and are not rendered.
To see the directives press Edit on GitHub and then
the Raw button.

## This will be marked as the setup code.
The setup logic makes the names assigned here global to the test module.
The code assigns the **names** math, mylist, a, b, and the function doubler().
Setup code does not have an output block.
Note the `<!--phmdoctest-setup-->` directive in the Markdown file.
<!--phmdoctest-setup-->
```python
import math

mylist = [1, 2, 3]
a, b = 10, 11

def doubler(x):
    return x * 2
```

## This test case shows the setup names are visible.
```python
print("math.pi=", round(math.pi, 3))
print(mylist)
print(a, b)
print("doubler(16)=", doubler(16))
```
expected output:
```
math.pi= 3.142
[1, 2, 3]
10 11
doubler(16)= 32
```

## This test case modifies mylist.
The objects created by the --setup code can be modified
and blocks run afterward will see the changes.
```python
mylist.append(4)
print(mylist)
```
expected output:
```
[1, 2, 3, 4]
```

## This test case sees the modified mylist.
```python
print(mylist == [1, 2, 3, 4])
```
expected output:
```
True
```

## This will be marked as the teardown code.
Teardown code does not have an output block.
Note `<!--phmdoctest-teardown-->` directive in the Markdown file.
<!--phmdoctest-teardown-->
```python
mylist.clear()
assert not mylist, "mylist was not emptied"
```





The above fenced code block contains the contents of a Markdown file.
It shows the HTML comments which are not visible in rendered Markdown.
It is included in the documentation as an example raw Markdown file.





            

          

      

      

    

  

    
      
          
            
  
doc/directive2_report.txt

         doc/directive2.md fenced blocks
-------------------------------------------------
block     line  test      TEXT or directive
type    number  role      quoted and one per line
-------------------------------------------------
python      14  setup     -setup
python      25  code
            32  output
python      42  code
            47  output
python      52  code
            56  output
python      64  teardown  -teardown
-------------------------------------------------
3 test cases.





The above fenced code block contains the contents of a plain text file.
It is included in the documentation as an example text file.





            

          

      

      

    

  

    
      
          
            
  
doc/test_directive2.py

"""pytest file built from doc/directive2.md"""
import pytest

from phmdoctest.fixture import managenamespace
from phmdoctest.functions import _phm_compare_exact


@pytest.fixture(scope="module")
def _phm_setup_teardown(managenamespace):
    # setup code line 14.
    import math

    mylist = [1, 2, 3]
    a, b = 10, 11

    def doubler(x):
        return x * 2

    managenamespace(operation="update", additions=locals())
    yield
    # teardown code line 64.
    mylist.clear()
    assert not mylist, "mylist was not emptied"

    managenamespace(operation="clear")


pytestmark = pytest.mark.usefixtures("_phm_setup_teardown")


def test_code_25_output_32(capsys):
    print("math.pi=", round(math.pi, 3))
    print(mylist)
    print(a, b)
    print("doubler(16)=", doubler(16))

    _phm_expected_str = """\
math.pi= 3.142
[1, 2, 3]
10 11
doubler(16)= 32
"""
    _phm_compare_exact(a=_phm_expected_str, b=capsys.readouterr().out)


def test_code_42_output_47(capsys):
    mylist.append(4)
    print(mylist)

    _phm_expected_str = """\
[1, 2, 3, 4]
"""
    _phm_compare_exact(a=_phm_expected_str, b=capsys.readouterr().out)


def test_code_52_output_56(capsys):
    print(mylist == [1, 2, 3, 4])

    _phm_expected_str = """\
True
"""
    _phm_compare_exact(a=_phm_expected_str, b=capsys.readouterr().out)





The above syntax highlighted fenced code block contains the
contents of a python source file.
It is included in the documentation as an example python file.





            

          

      

      

    

  

    
      
          
            
  
This is Markdown file directive3.md

Directives are HTML comments and are not rendered.
To see the directives press Edit on GitHub and then
the Raw button.


share-names and clear-names directives.

First a normal test case with no directives.
This generates a test case.  The name not_shared is local to
the function test_code_13_output_17().

not_shared = "Hello World!"
print(not_shared)





Hello World!





This verifies not_shared is not visible.


try:
    print(not_shared)
except NameError:
    pass
else:
    assert False, "did not get expected NameError"








Share the names assigned here with later Python code blocks.

The share-names directive makes the names assigned here
global to the test module.  The names are visible to all Python code blocks
occurring later in the Markdown source file. The code assigns the
names string, x, y, z, grades, and the function incrementer().
Place the <!--phmdoctest-share-names--> directive in the Markdown file.



import string

x, y, z = 77, 88, 99

def incrementer(x):
    return x + 1

grades = ["A", "B", "C"]








This test case shows the shared names are visible.

print("string.digits=", string.digits)
print(incrementer(10))
print(grades)
print(x, y, z)





expected output:

string.digits= 0123456789
11
['A', 'B', 'C']
77 88 99








This test case modifies grades.

The objects created by the share-names code block can be modified
and blocks run afterward will see the changes.

grades.append("D")








This test case sees the modified grades.

print(grades == ["A", "B", "C", "D"])





expected output:

True








This test case shares another name.


hex_digits = string.hexdigits
print(hex_digits)





A Python block with the share-names directive can
have an output block.

0123456789abcdefABCDEF








Use clear-names directive to un-share.

First notice that hex_digits shared by the last test case
is visible.
The clear-names directive un-shares any previously shared names.
The names will no longer be visible to Python code
blocks occurring later in the Markdown source file.
The clearing does not happen until after the test case runs.
This test case is the same as the previous test case to show
that mylist is still visible.


print("Names are cleared after the code runs.")
print(grades == ["A", "B", "C", "D"])
print(hex_digits)





expected output:

Names are cleared after the code runs.
True
0123456789abcdefABCDEF





Here we show that grades and digits are no longer visible.

try:
    print(grades)
except NameError:
    pass
else:
    assert False, "expected NameError for grades"
try:
    print(hex_digits)
except NameError:
    pass
else:
    assert False, "expected NameError for hex_digits"











            

          

      

      

    

  

    
      
          
            
  
doc/directive3.md

# This is Markdown file directive3.md

Directives are HTML comments and are not rendered.
To see the directives press Edit on GitHub and then
the Raw button.

## share-names and clear-names directives.

First a normal test case with no directives.
This generates a test case.  The name `not_shared` is local to
the function test_code_13_output_17().
```python
not_shared = "Hello World!"
print(not_shared)
```
```
Hello World!
```

This verifies `not_shared` is not visible.
<!--phmdoctest-label test_not_visible-->
```python
try:
    print(not_shared)
except NameError:
    pass
else:
    assert False, "did not get expected NameError"
```

## Share the names assigned here with later Python code blocks.
The share-names directive makes the names assigned here
global to the test module.  The names are visible to all Python code blocks
occurring later in the Markdown source file. The code assigns the
names string, x, y, z, grades, and the function incrementer().
Place the `<!--phmdoctest-share-names-->` directive in the Markdown file.

<!--phmdoctest-label test_directive_share_names-->
<!--phmdoctest-share-names-->
```python
import string

x, y, z = 77, 88, 99

def incrementer(x):
    return x + 1

grades = ["A", "B", "C"]
```

## This test case shows the shared names are visible.
```python
print("string.digits=", string.digits)
print(incrementer(10))
print(grades)
print(x, y, z)
```
expected output:
```
string.digits= 0123456789
11
['A', 'B', 'C']
77 88 99
```

## This test case modifies grades.
The objects created by the share-names code block can be modified
and blocks run afterward will see the changes.
```python
grades.append("D")
```

## This test case sees the modified grades.
```python
print(grades == ["A", "B", "C", "D"])
```
expected output:
```
True
```

## This test case shares another name.
<!--phmdoctest-share-names-->
```python
hex_digits = string.hexdigits
print(hex_digits)
```

A Python block with the share-names directive can
have an output block.

```
0123456789abcdefABCDEF
```

## Use clear-names directive to un-share.

First notice that hex_digits shared by the last test case
is visible.
The clear-names directive un-shares any previously shared names.
The names will no longer be visible to Python code
blocks occurring later in the Markdown source file.
The clearing does not happen until after the test case runs.
This test case is the same as the previous test case to show
that mylist is still visible.
<!--phmdoctest-clear-names-->
```python
print("Names are cleared after the code runs.")
print(grades == ["A", "B", "C", "D"])
print(hex_digits)
```
expected output:
```
Names are cleared after the code runs.
True
0123456789abcdefABCDEF
```

Here we show that grades and digits are no longer visible.
```python
try:
    print(grades)
except NameError:
    pass
else:
    assert False, "expected NameError for grades"
try:
    print(hex_digits)
except NameError:
    pass
else:
    assert False, "expected NameError for hex_digits"
```





The above fenced code block contains the contents of a Markdown file.
It shows the HTML comments which are not visible in rendered Markdown.
It is included in the documentation as an example raw Markdown file.





            

          

      

      

    

  

    
      
          
            
  
doc/directive3_report.txt

             doc/directive3.md fenced blocks
---------------------------------------------------------
block     line  test    TEXT or directive
type    number  role    quoted and one per line
---------------------------------------------------------
python      13  code
            17  output
python      23  code    -label test_not_visible
python      41  code    -label test_directive_share_names
                        -share-names
python      53  code
            60  output
python      70  code
python      75  code
            79  output
python      85  code    -share-names
            93  output
python     108  code    -clear-names
           114  output
python     121  code
---------------------------------------------------------
9 test cases.
4 code blocks with no output block.





The above fenced code block contains the contents of a plain text file.
It is included in the documentation as an example text file.





            

          

      

      

    

  

    
      
          
            
  
doc/test_directive3.py

"""pytest file built from doc/directive3.md"""
import pytest

from phmdoctest.fixture import managenamespace
from phmdoctest.functions import _phm_compare_exact


def test_code_13_output_17(capsys):
    not_shared = "Hello World!"
    print(not_shared)

    _phm_expected_str = """\
Hello World!
"""
    _phm_compare_exact(a=_phm_expected_str, b=capsys.readouterr().out)


def test_not_visible():
    try:
        print(not_shared)
    except NameError:
        pass
    else:
        assert False, "did not get expected NameError"

    # Caution- no assertions.


def test_directive_share_names(managenamespace):
    import string

    x, y, z = 77, 88, 99

    def incrementer(x):
        return x + 1

    grades = ["A", "B", "C"]

    # Caution- no assertions.
    managenamespace(operation="update", additions=locals())


def test_code_53_output_60(capsys):
    print("string.digits=", string.digits)
    print(incrementer(10))
    print(grades)
    print(x, y, z)

    _phm_expected_str = """\
string.digits= 0123456789
11
['A', 'B', 'C']
77 88 99
"""
    _phm_compare_exact(a=_phm_expected_str, b=capsys.readouterr().out)


def test_code_70():
    grades.append("D")

    # Caution- no assertions.


def test_code_75_output_79(capsys):
    print(grades == ["A", "B", "C", "D"])

    _phm_expected_str = """\
True
"""
    _phm_compare_exact(a=_phm_expected_str, b=capsys.readouterr().out)


def test_code_85_output_93(capsys, managenamespace):
    hex_digits = string.hexdigits
    print(hex_digits)

    _phm_expected_str = """\
0123456789abcdefABCDEF
"""
    _phm_compare_exact(a=_phm_expected_str, b=capsys.readouterr().out)
    managenamespace(operation="update", additions=locals())


def test_code_108_output_114(capsys, managenamespace):
    print("Names are cleared after the code runs.")
    print(grades == ["A", "B", "C", "D"])
    print(hex_digits)

    _phm_expected_str = """\
Names are cleared after the code runs.
True
0123456789abcdefABCDEF
"""
    _phm_compare_exact(a=_phm_expected_str, b=capsys.readouterr().out)
    managenamespace(operation="clear")


def test_code_121():
    try:
        print(grades)
    except NameError:
        pass
    else:
        assert False, "expected NameError for grades"
    try:
        print(hex_digits)
    except NameError:
        pass
    else:
        assert False, "expected NameError for hex_digits"

    # Caution- no assertions.





The above syntax highlighted fenced code block contains the
contents of a python source file.
It is included in the documentation as an example python file.





            

          

      

      

    

  

    
      
          
            
  
This is file doc/my_markdown_file.md


The label directive can be placed on any fenced code block.









            

          

      

      

    

  

    
      
          
            
  
Examples of code and session blocks

This file (project.md) has some example code and session blocks
including a doctest directive example.


An example with a blank line in the output

Note no  directive in the output block of a Python
code block output block pair.
  
    
    
    This is Markdown file setup.md
    

    
 
  

    
      
          
            
  
This is Markdown file setup.md


This will be the setup code.

The setup logic makes the names assigned here global to the test module.
The code assigns the names math, mylist, a, b, and the function doubler().
Use phmdoctest –setup FIRST to select it.
Setup code does not have an output block.

import math

mylist = [1, 2, 3]
a, b = 10, 11

def doubler(x):
    return x * 2








This test case shows the setup names are visible

print("math.pi=", round(math.pi, 3))
print(mylist)
print(a, b)
print("doubler(16)=", doubler(16))





expected output:

math.pi= 3.142
[1, 2, 3]
10 11
doubler(16)= 32








This test case modifies mylist.

The objects created by the –setup code can be modified
and blocks run afterward will see the changes.

mylist.append(4)
print(mylist)





expected output:

[1, 2, 3, 4]








This test case sees the modified mylist.

print(mylist == [1, 2, 3, 4])





expected output:

True








This will be specified as the teardown code.

Use phmdoctest –teardown LAST to select it.
Teardown code does not have an output block.

mylist.clear()
assert not mylist, "mylist was not emptied"











            

          

      

      

    

  

  
    
    
    doc/test_setup.py
    

    
 
  

    
      
          
            
  
doc/test_setup.py

"""pytest file built from doc/setup.md"""
import pytest

from phmdoctest.fixture import managenamespace
from phmdoctest.functions import _phm_compare_exact


@pytest.fixture(scope="module")
def _phm_setup_teardown(managenamespace):
    # setup code line 9.
    import math

    mylist = [1, 2, 3]
    a, b = 10, 11

    def doubler(x):
        return x * 2

    managenamespace(operation="update", additions=locals())
    yield
    # teardown code line 58.
    mylist.clear()
    assert not mylist, "mylist was not emptied"

    managenamespace(operation="clear")


pytestmark = pytest.mark.usefixtures("_phm_setup_teardown")


def test_code_20_output_27(capsys):
    print("math.pi=", round(math.pi, 3))
    print(mylist)
    print(a, b)
    print("doubler(16)=", doubler(16))

    _phm_expected_str = """\
math.pi= 3.142
[1, 2, 3]
10 11
doubler(16)= 32
"""
    _phm_compare_exact(a=_phm_expected_str, b=capsys.readouterr().out)


def test_code_37_output_42(capsys):
    mylist.append(4)
    print(mylist)

    _phm_expected_str = """\
[1, 2, 3, 4]
"""
    _phm_compare_exact(a=_phm_expected_str, b=capsys.readouterr().out)


def test_code_47_output_51(capsys):
    print(mylist == [1, 2, 3, 4])

    _phm_expected_str = """\
True
"""
    _phm_compare_exact(a=_phm_expected_str, b=capsys.readouterr().out)





The above syntax highlighted fenced code block contains the
contents of a python source file.
It is included in the documentation as an example python file.





            

          

      

      

    

  

  
    
    
    This is Markdown file setup_doctest.md
    

    
 
  

    
      
          
            
  
This is Markdown file setup_doctest.md


This will be the setup code.

The setup logic makes the names assigned here global to the test module.
The code assigns the names math, mylist, a, b, and the function doubler().
Use phmdoctest –setup FIRST to select it.
Setup code does not have an output block.

import math

mylist = [1, 2, 3]
a, b = 10, 11

def doubler(x):
    return x * 2








This test case shows the setup names are visible

print("math.pi=", round(math.pi, 3))
print(mylist)
print(a, b)
print("doubler(16)=", doubler(16))





expected output:

math.pi= 3.142
[1, 2, 3]
10 11
doubler(16)= 32








This test case modifies mylist.

The objects created by the –setup code can be modified
and blocks run afterward will see the changes.

mylist.append(4)
print(mylist)





expected output:

[1, 2, 3, 4]








The next test case sees the modified mylist.

print(mylist == [1, 2, 3, 4])





expected output:

True








The names created by the setup code are optionally visible to sessions.

When running phmdoctest setup names become visible to sessions
by using these options:


	–setup specifies a code block that initializes variables.


	–setup-doctest injects the setup variables into the doctest namespace.




Run the generated test file with pytest.


	Specify –doctest-modules to run the sessions.


	Sessions run in a separate context from the Python code/output block
pairs.  The setup and teardown get repeated.




The value 55 is appended to mylist. Note that the 4 appended by the
test case above is not there.  This is because the sessions
run in a separate context.

>>> mylist.append(55)
>>> mylist
[1, 2, 3, 55]





The change to mylist made in the session above is visible.

>>> mylist
[1, 2, 3, 55]
>>> round(math.pi, 3)
3.142








This will be specified as the teardown code.

Use phmdoctest –teardown LAST to select it.
Teardown code does not have an output block.

mylist.clear()
assert not mylist, "mylist was not emptied"











            

          

      

      

    

  

  
    
    
    doc/test_setup_doctest.py
    

    
 
  

    
      
          
            
  
doc/test_setup_doctest.py

"""pytest file built from doc/setup_doctest.md"""
import pytest

from phmdoctest.fixture import managenamespace
from phmdoctest.functions import _phm_compare_exact


@pytest.fixture(scope="module")
def _phm_setup_doctest_teardown(doctest_namespace, managenamespace):
    # setup code line 9.
    import math

    mylist = [1, 2, 3]
    a, b = 10, 11

    def doubler(x):
        return x * 2

    managenamespace(operation="update", additions=locals())
    # update doctest namespace
    additions = managenamespace(operation="copy")
    for k, v in additions.items():
        doctest_namespace[k] = v
    yield
    # teardown code line 86.
    mylist.clear()
    assert not mylist, "mylist was not emptied"

    managenamespace(operation="clear")


pytestmark = pytest.mark.usefixtures("_phm_setup_doctest_teardown")


@pytest.fixture()
def populate_doctest_namespace(doctest_namespace, managenamespace):
    additions = managenamespace(operation="copy")
    for k, v in additions.items():
        doctest_namespace[k] = v


def session_00000():
    r"""
    >>> getfixture('populate_doctest_namespace')
    """


def test_code_20_output_27(capsys):
    print("math.pi=", round(math.pi, 3))
    print(mylist)
    print(a, b)
    print("doubler(16)=", doubler(16))

    _phm_expected_str = """\
math.pi= 3.142
[1, 2, 3]
10 11
doubler(16)= 32
"""
    _phm_compare_exact(a=_phm_expected_str, b=capsys.readouterr().out)


def test_code_37_output_42(capsys):
    mylist.append(4)
    print(mylist)

    _phm_expected_str = """\
[1, 2, 3, 4]
"""
    _phm_compare_exact(a=_phm_expected_str, b=capsys.readouterr().out)


def test_code_47_output_51(capsys):
    print(mylist == [1, 2, 3, 4])

    _phm_expected_str = """\
True
"""
    _phm_compare_exact(a=_phm_expected_str, b=capsys.readouterr().out)


def session_00001_line_69():
    r"""
    >>> mylist.append(55)
    >>> mylist
    [1, 2, 3, 55]
    """


def session_00002_line_76():
    r"""
    >>> mylist
    [1, 2, 3, 55]
    >>> round(math.pi, 3)
    3.142
    """





The above syntax highlighted fenced code block contains the
contents of a python source file.
It is included in the documentation as an example python file.





            

          

      

      

    

  

  
    
    
    This is Markdown file mark_example.md
    

    
 
  

    
      
          
            
  
This is Markdown file mark_example.md


Fenced code block expected output block pair.

Example code adapted from the Python Tutorial:

squares = [1, 4, 9, 16, 25]
print(squares)





expected output:

[1, 4, 9, 16, 25]








The code block has 2 directives:


	phmdoctest-label test_datetime


	phmdoctest-mark.slow




The first directive names the generated test function.

The second directive add @pytest.mark.slow decorator. slow is
a pytest user defined marker that is used to select/deselect
test cases using the pytest –marker command line option.



from datetime import date

d = date.fromordinal(730920)  # 730920th day after 1. 1. 0001
print(d)





2002-03-11








A doctest session

Example borrowed from Python Standard Library
fractions documentation.

>>> from fractions import Fraction
>>> Fraction(16, -10)
Fraction(-8, 5)
>>> Fraction(123)
Fraction(123, 1)
>>> Fraction()
Fraction(0, 1)
>>> Fraction('3/7')
Fraction(3, 7)











            

          

      

      

    

  

  
    
    
    doc/mark_example.md
    

    
 
  

    
      
          
            
  
doc/mark_example.md

# This is Markdown file mark_example.md
## Fenced code block expected output block pair.

Example code adapted from the Python Tutorial:
```python
squares = [1, 4, 9, 16, 25]
print(squares)
```
expected output:
```
[1, 4, 9, 16, 25]
```

## The code block has 2 directives:

- phmdoctest-label test_datetime
- phmdoctest-mark.slow

The first directive names the generated test function.

The second directive add @pytest.mark.slow decorator. slow is
a pytest user defined marker that is used to select/deselect
test cases using the pytest --marker command line option.

<!--phmdoctest-label test_datetime-->
<!--phmdoctest-mark.slow-->
```python
from datetime import date

d = date.fromordinal(730920)  # 730920th day after 1. 1. 0001
print(d)
```

```
2002-03-11
```

## A doctest session

Example borrowed from Python Standard Library
fractions documentation.

```py
>>> from fractions import Fraction
>>> Fraction(16, -10)
Fraction(-8, 5)
>>> Fraction(123)
Fraction(123, 1)
>>> Fraction()
Fraction(0, 1)
>>> Fraction('3/7')
Fraction(3, 7)
```





The above fenced code block contains the contents of a Markdown file.
It shows the HTML comments which are not visible in rendered Markdown.
It is included in the documentation as an example raw Markdown file.





            

          

      

      

    

  

  
    
    
    doc/test_mark_example.py
    

    
 
  

    
      
          
            
  
doc/test_mark_example.py

"""pytest file built from doc/mark_example.md"""
import pytest

from phmdoctest.functions import _phm_compare_exact


def test_code_6_output_11(capsys):
    squares = [1, 4, 9, 16, 25]
    print(squares)

    _phm_expected_str = """\
[1, 4, 9, 16, 25]
"""
    _phm_compare_exact(a=_phm_expected_str, b=capsys.readouterr().out)


@pytest.mark.slow
def test_datetime(capsys):
    from datetime import date

    d = date.fromordinal(730920)  # 730920th day after 1. 1. 0001
    print(d)

    _phm_expected_str = """\
2002-03-11
"""
    _phm_compare_exact(a=_phm_expected_str, b=capsys.readouterr().out)


def session_00001_line_44():
    r"""
    >>> from fractions import Fraction
    >>> Fraction(16, -10)
    Fraction(-8, 5)
    >>> Fraction(123)
    Fraction(123, 1)
    >>> Fraction()
    Fraction(0, 1)
    >>> Fraction('3/7')
    Fraction(3, 7)
    """





The above syntax highlighted fenced code block contains the
contents of a python source file.
It is included in the documentation as an example python file.





            

          

      

      

    

  

  
    
    
    This is Markdown file inline_example.md
    

    
 
  

    
      
          
            
  
This is Markdown file inline_example.md

To comment out sections of Python code blocks use inline annotations.


	phmdoctest:pass


	phmdoctest:omit




This example shows use of phmdoctest:omit to comment out one line
at a time in two places.

def cause_assertion():
    print("before assert...")
    assert False                  # phmdoctest:omit
    print("after assert.")
    print("bye")  # phmdoctest:omit

cause_assertion()





Expected output:

before assert...
after assert.





This example shows use of phmdoctest:omit to comment out an
indented section.

def prints_too_much(condition):
    print("called with", condition)
    if condition:             # phmdoctest:omit
        print("-" * 50)
        # note the section continues across blank lines

        print("=" * 50)
        print("*" * 50)

    # Can't use phmdoctest:omit on the next line because
    # the else: line would get a Python SyntaxError.
    if condition:
        # So use phmdoctest:pass on the next line.
        print("condition is true")  # phmdoctest:pass
    else:
        print("condition is false")
    print("done")

prints_too_much(True)
prints_too_much(False)





Expected output:

called with True
done
called with False
condition is false
done









            

          

      

      

    

  

  
    
    
    doc/test_inline_example.py
    

    
 
  

    
      
          
            
  
doc/test_inline_example.py

"""pytest file built from doc/inline_example.md"""
from phmdoctest.functions import _phm_compare_exact


def test_code_11_output_21_2(capsys):
    def cause_assertion():
        print("before assert...")
        # assert False                  # phmdoctest:omit
        print("after assert.")
        # print("bye")  # phmdoctest:omit

    cause_assertion()

    _phm_expected_str = """\
before assert...
after assert.
"""
    _phm_compare_exact(a=_phm_expected_str, b=capsys.readouterr().out)


def test_code_29_output_52_2(capsys):
    def prints_too_much(condition):
        print("called with", condition)
        # if condition:             # phmdoctest:omit
        #     print("-" * 50)
        #     # note the section continues across blank lines
        #
        #     print("=" * 50)
        #     print("*" * 50)

        # Can't use phmdoctest:omit on the next line because
        # the else: line would get a Python SyntaxError.
        if condition:
            # So use phmdoctest:pass on the next line.
            pass  # print("condition is true")  # phmdoctest:pass
        else:
            print("condition is false")
        print("done")

    prints_too_much(True)
    prints_too_much(False)

    _phm_expected_str = """\
called with True
done
called with False
condition is false
done
"""
    _phm_compare_exact(a=_phm_expected_str, b=capsys.readouterr().out)





The above syntax highlighted fenced code block contains the
contents of a python source file.
It is included in the documentation as an example python file.





            

          

      

      

    

  

  
    
    
    tests/project_test.py
    

    
 
  

    
      
          
            
  
tests/project_test.py

"""Example pytest usage of testfile_creator and testfile_tester fixtures.

pytester requires conftest.py in tests folder with pytest_plugins = [“pytester”]
Requires pytest >= 6.2.
"""

from phmdoctest.tester import testfile_creator
from phmdoctest.tester import testfile_tester


def test_generate_run_project(testfile_creator, testfile_tester):
    """Generate pytest file from project.md and run it with pytester."""
    testfile = testfile_creator("project.md")
    result = testfile_tester(
        contents=testfile, pytest_options=["-v", "--doctest-modules"]
    )
    result.assert_outcomes(passed=4)





The above syntax highlighted fenced code block contains the
contents of a python source file.
It is included in the documentation as an example python file.





            

          

      

      

    

  

  
    
    
    Python Module Index
    

    

 


  

    
      
          
            

   Python Module Index


   
   p
   


   
     		 	

     		
       p	

     
       	[image: -]
       	
       phmdoctest	
       

     
       	
       	   
       phmdoctest.main	
       

     
       	
       	   
       phmdoctest.simulator	
       

     
       	
       	   
       phmdoctest.tester	
       

     
       	
       	   
       phmdoctest.tool	
       

   



            

          

      

      

    

  

  
    
    
    Index
    

    
 
  

    
      
          
            

Index



 _
 | C
 | D
 | E
 | F
 | G
 | L
 | M
 | P
 | R
 | T
 | W
 


_


  	
      	__init__() (phmdoctest.tool.FCBChooser method)


  





C


  	
      	contents() (phmdoctest.tool.FCBChooser method)


  





D


  	
      	detect_python_examples() (in module phmdoctest.tool)


  





E


  	
      	extract_testsuite() (in module phmdoctest.tool)


  





F


  	
      	FCBChooser (class in phmdoctest.tool)


  

  	
      	fenced_block_nodes() (in module phmdoctest.tool)


      	fenced_code_blocks() (in module phmdoctest.tool)


  





G


  	
      	generate_using() (in module phmdoctest.main)


  





L


  	
      	labeled_fenced_code_blocks() (in module phmdoctest.tool)


  

  	
      	LabeledFCB (class in phmdoctest.tool)


  





M


  	
      	
    module

      
        	phmdoctest.main


        	phmdoctest.simulator


        	phmdoctest.tester


        	phmdoctest.tool


      


  





P


  	
      	
    phmdoctest.main

      
        	module


      


      	
    phmdoctest.simulator

      
        	module


      


  

  	
      	
    phmdoctest.tester

      
        	module


      


      	
    phmdoctest.tool

      
        	module


      


      	PythonExamples (class in phmdoctest.tool)


  





R


  	
      	run_and_pytest() (in module phmdoctest.simulator)


  





T


  	
      	testfile() (in module phmdoctest.main)


  

  	
      	testfile_creator() (in module phmdoctest.tester)


      	testfile_tester() (in module phmdoctest.tester)


  





W


  	
      	wipe_testfile_directory() (in module phmdoctest.tool)


  







            

          

      

      

    

  
_static/file.png





_static/minus.png





_static/plus.png





nav.xhtml

    
      Table of Contents


      
        		
          phmdoctest 1.4.0
        


        		
          phmdoctest 1.4.0
          
            		
              Introduction
              
                		
                  default branch status
                


              


            


            		
              Installation
            


            		
              Sample usage
            


            		
              Sample Usage with HTML comment directives
            


            		
              CI usage
            


            		
              report option
            


            		
              Identifying blocks
            


            		
              Directives
            


            		
              skip
            


            		
              label on code and sessions
            


            		
              label on any fenced code block
            


            		
              pytest skip
            


            		
              pytest skipif
            


            		
              setup
            


            		
              teardown
            


            		
              share-names
            


            		
              clear-names
            


            		
              pytest mark decorator
            


            		
              label skip and mark example
            


            		
              setup and teardown example
            


            		
              share-names clear-names example
            


            		
              Configuration
            


            		
              Inline annotations
            


            		
              skipping blocks with skip option
            


            		
              skip option
            


            		
              short form of skip option
            


            		
              fail-nocode option
            


            		
              setup option
            


            		
              teardown option
            


            		
              Setup example
            


            		
              Setup for sessions
            


            		
              Execution context
              
                		
                  With –setup
                


                		
                  With share-names
                


                		
                  With –setup and –setup-doctest
                


                		
                  pytest live logging demo
                


              


            


            		
              Send outfile to stdout
            


            		
              Usage
            


            		
              Run as a Python module
            


            		
              Python API
            


            		
              pytest fixtures
            


            		
              Simulate command line
            


            		
              Hints
            


            		
              Directive hints
            


            		
              Related projects
            


          


        


        		
          Using a configuration file
        


        		
          Recent changes
        


        		
          Development tools API version 1.4.0
          
            		
              Generate a pytest file.
            


            		
              Generate pytest files using a configuration file.
            


            		
              Test with Pytest fixtures.
            


            		
              Simulate the command line.
            


            		
              Read contents of Markdown fenced code blocks.
            


            		
              Get elements from test suite JUnit XML output.
            


            		
              Check a Markdown file for Python examples.
            


            		
              Prepare directory for generated test files.
            


          


        


        		
          About the documentation
          
            		
              Implementation
            


            		
              Tools
            


            		
              Files
              
                		
                  Read the Docs hosting
                


              


            


          


        


        		
          Contributing
        


        		
          List of examples
          
            		
              Snippet of use in GitHub Actions
            


            		
              This is Markdown file example1.md
              
                		
                  Interactive Python session (doctest)
                


                		
                  Source Code and terminal output
                


              


            


            		
              This is Markdown file example2.md
              
                		
                  Fenced code block expected output block pair.
                


                		
                  Another fenced code block expected output block pair.
                


                		
                  Here is a second fenced code block with no info string.
                


                		
                  Here are two Python code blocks in a row and one output block at the end.
                


                		
                  A fenced code block with yaml info string.
                


                		
                  A fenced block with text info string
                


                		
                  A doctest session
                


                		
                  One more code plus expected output pair.
                


                		
                  Another doctest session (skipped in test_example2.py)
                


              


            


            		
              doc/test_example2.py
            


            		
              This is Markdown file directive1.md
              
                		
                  skip directive. No test case gets generated.
                


                		
                  skip directive on an expected output block.
                


                		
                  skip directive on Python session.
                


                		
                  mark.skip directive with label directive.
                


                		
                  mark.skipif directive.
                


                		
                  label directive on a session.
                


              


            


            		
              doc/directive1.md
            


            		
              doc/directive1_report.txt
            


            		
              doc/test_directive1.py
            


            		
              This is Markdown file directive2.md
              
                		
                  This will be marked as the setup code.
                


                		
                  This test case shows the setup names are visible.
                


                		
                  This test case modifies mylist.
                


                		
                  This test case sees the modified mylist.
                


                		
                  This will be marked as the teardown code.
                


              


            


            		
              doc/directive2.md
            


            		
              doc/directive2_report.txt
            


            		
              doc/test_directive2.py
            


            		
              This is Markdown file directive3.md
              
                		
                  share-names and clear-names directives.
                


                		
                  Share the names assigned here with later Python code blocks.
                


                		
                  This test case shows the shared names are visible.
                


                		
                  This test case modifies grades.
                


                		
                  This test case sees the modified grades.
                


                		
                  This test case shares another name.
                


                		
                  Use clear-names directive to un-share.
                


              


            


            		
              doc/directive3.md
            


            		
              doc/directive3_report.txt
            


            		
              doc/test_directive3.py
            


            		
              This is file doc/my_markdown_file.md
            


            		
              Examples of code and session blocks
              
                		
                  An example with a blank line in the output
                


                		
                  Interactive Python session requires <BLANKINE> in the expected output
                


                		
                  Interactive Python session with doctest directive
                


                		
                  Session with py as the fenced code block info_string
                


              


            


            		
              This is Markdown file setup.md
              
                		
                  This will be the setup code.
                


                		
                  This test case shows the setup names are visible
                


                		
                  This test case modifies mylist.
                


                		
                  This test case sees the modified mylist.
                


                		
                  This will be specified as the teardown code.
                


              


            


            		
              doc/test_setup.py
            


            		
              This is Markdown file setup_doctest.md
              
                		
                  This will be the setup code.
                


                		
                  This test case shows the setup names are visible
                


                		
                  This test case modifies mylist.
                


                		
                  The next test case sees the modified mylist.
                


                		
                  The names created by the setup code are optionally visible to sessions.
                


                		
                  This will be specified as the teardown code.
                


              


            


            		
              doc/test_setup_doctest.py
            


            		
              This is Markdown file mark_example.md
              
                		
                  Fenced code block expected output block pair.
                


                		
                  The code block has 2 directives:
                


                		
                  A doctest session
                


              


            


         